

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}+=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, and $\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$ unless otherwise specified. Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$.								
Parameter	Conditions	BCJ, BIWM, CIWM and CCJ Devices			BCV, CCV, CCWM, BCN and CCN Devices			Units
		Typ (Note 12)	Tested Limit (Note 13)	$\begin{array}{\|c} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 14) } \\ \hline \end{array}$	Typ (Note 12)	Tested Limit (Note 13)	$\begin{array}{\|c} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 14) } \\ \hline \end{array}$	
CONVERTER AND MULTIPLEXER CHARACTERISTICS (Continued)								
Change in zero error from $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ to internal zener operation (Note 3)	$\begin{aligned} & 15 \mathrm{~mA} \text { into } \mathrm{V}+ \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{N} . \mathrm{C} . \\ & \mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V} \end{aligned}$		1			1	1	LSB
V_{Z}, internal MIN diode breakdown (at V_{+}) (Note 3) MAX	15 mA into $\mathrm{V}+$		$\begin{aligned} & 6.3 \\ & 8.5 \end{aligned}$			$\begin{aligned} & 6.3 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 8.5 \end{aligned}$	V
Power Supply Sensitivity	$V_{C C}=5 \mathrm{~V} \pm 5 \%$	$\pm 1 / 16$	$\pm 1 / 4$	$\pm 1 / 4$	$\pm 1 / 16$	$\pm 1 / 4$	$\pm 1 / 4$	LSB
IOFF, Off Channel Leakage Current (Note 9)	On Channel $=5 \mathrm{~V}$, Off Channel $=0 \mathrm{~V}$		$\begin{gathered} -0.2 \\ -1 \end{gathered}$			-0.2	-1	$\mu \mathrm{A}$
	On Channel = OV, Off Channel $=5 \mathrm{~V}$		$\begin{gathered} +0.2 \\ +\mathbf{1} \end{gathered}$			+0.2	+1	$\mu \mathrm{A}$
ION, On Channel Leakage Current (Note 9)	On Channel = OV, Off Channel $=5 \mathrm{~V}$		$\begin{gathered} -0.2 \\ -\mathbf{1} \end{gathered}$			-0.2	-1	$\mu \mathrm{A}$
	On Channel $=5 \mathrm{~V}$, Off Channel $=0 \mathrm{~V}$		$\begin{gathered} +0.2 \\ +\mathbf{1} \end{gathered}$			$+0.2$	+1	$\mu \mathrm{A}$
DIGITAL AND DC CHARACTERISTICS								
$V_{\text {IN(1) }}$, Logical "1" Input Voltage (Min)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		2.0			2.0	2.0	V
$\mathrm{V}_{\text {IN(0) }}$, Logical "0" Input Voltage (Max)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		0.8			0.8	0.8	V
$I_{\text {IN(1) }}$, Logical " 1 " Input Current (Max)	$\mathrm{V}_{1 \mathrm{~N}}=5.0 \mathrm{~V}$	0.005	1		0.005	1	1	$\mu \mathrm{A}$
IIN(0), Logical " 0 " Input Current (Max)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-0.005	-1		-0.005	-1	-1	$\mu \mathrm{A}$
VOUT(1), Logical "1" Output Voltage (Min)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \text { IOUT }=-360 \mu \mathrm{~A} \\ & \text { IOUT }=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
VOUT(0), Logical "0" Output Voltage (Max)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{OUT}}=1.6 \mathrm{~mA} \end{aligned}$		0.4			0.4	0.4	V
IOUT, TRI-STATE Output Current (Max)	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.1 \\ 0.1 \end{gathered}$	$\begin{gathered} -\mathbf{3} \\ \mathbf{3} \end{gathered}$		$\begin{gathered} -0.1 \\ 0.1 \end{gathered}$	$\begin{aligned} & -3 \\ & +3 \end{aligned}$	$\begin{array}{r} -3 \\ +3 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
ISOURCE, Output Source Current (Min)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-14	-6.5		-14	-7.5	-6.5	mA
ISINK, Output Sink Current (Min)	$V_{\text {OUT }}=V_{\text {CC }}$	16	8.0		16	9.0	8.0	mA
$I_{\text {CC }}$, Supply Current (Max) ADC0831, ADC0834, ADC0838		0.9	2.5		0.9	2.5	2.5	mA
ADC0832	Includes Ladder Current	2.3	6.5		2.3	6.5	6.5	mA

AC Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter		Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 12) } \end{gathered}$	Tested Limit (Note 13) 10	Design Limit (Note 14)400	Limit Units kHz kHz
f_{Cl}, Clock Frequency	Min Max					
t_{C}, Conversion Time		Not including MUX Addressing Time		8		1/f ${ }_{\text {CLK }}$
Clock Duty Cycle (Note 10)	Min Max				$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
$\mathrm{t}_{\text {SET-UP, }} \overline{\mathrm{CS}}$ Falling Edge or Data Input Valid to CLK Rising Edge					250	ns
$\mathrm{t}_{\text {HOLD }}$, Data Input Valid after CLK Rising Edge					90	ns
$\mathrm{t}_{\mathrm{pd1} 1}, \mathrm{t}_{\mathrm{pd} 0}$-CLK Falling Edge to Output Data Valid (Note 11)		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ Data MSB First Data LSB First	$\begin{aligned} & 650 \\ & 250 \end{aligned}$		$\begin{gathered} 1500 \\ 600 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$,-Rising Edge of CS to Data Output and SARS Hi-Z		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \text { (see TRI-STATE }{ }^{\circledR} \text { Test Circuits) } \end{aligned}$	125		250	ns
		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pf}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$		500		ns
C_{IN}, Capacitance of Logic Input			5			pF
Cout, Capacitance of Logic Outputs			5			pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to the ground plugs.
Note 3: Internal zener diodes (6.3 to 8.5 V) are connected from $\mathrm{V}+$ to GND and V_{CC} to GND . The zener at $\mathrm{V}+$ can operate as a shunt regulator and is connected to V_{CC} via a conventional diode. Since the zener voltage equals the A / D 's breakdown voltage, the diode insures that V_{CC} will be below breakdown when the device is powered from $\mathrm{V}+$. Functionality is therefore guaranteed for $\mathrm{V}+$ operation even though the resultant voltage at V_{CC} may exceed the specified Absolute Max of 6.5 V . It is recommended that a resistor be used to limit the max current into $\mathrm{V}+$. (See Figure 3 in Functional Description Section 6.0)

Note 4: When the input voltage $\left(V_{I N}\right)$ at any pin exceeds the power supply rails $\left(V_{I N}<V^{-}\right.$or $\left.V_{I N}>V^{+}\right)$the absolute value of current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four. Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: Total unadjusted error includes offset, full-scale, linearity, and multiplexer errors.
Note 7: Cannot be tested for ADC0832.
Note 8: For $\mathrm{V}_{\operatorname{IN}}(-) \geq \mathrm{V}_{\operatorname{IN}}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater then the V_{CC} supply. Be careful, during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog V_{IN} or $\mathrm{V}_{\text {REF }}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 9: Leakage current is measured with the clock not switching.
Note 10: A 40% to 60% clock duty cycle range insures proper operation at all clock frequencies. In the case that an available clock has a duty cycle outside of these limits, the minimum, time the clock is high or the minimum time the clock is low must be at least $1 \mu \mathrm{~s}$. The maximum time the clock can be high is $60 \mu \mathrm{~s}$. The clock can be stopped when low so long as the analog input voltage remains stable.
Note 11: Since data, MSB first, is the output of the comparator used in the successive approximation loop, an additional delay is built in (see Block Diagram) to allow for comparator response time.
Note 12: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 13: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 14: Guaranteed but not 100% production tested. These limits are not used to calculate outgoing quality levels.

Typical Performance Characteristics

TL/H/5583-2

Note: For ADC0832 add IREF
TL/H/5583-40

Leakage Current Test Circuit

TRI-STATE Test Circuits and Waveforms

TL/H/5583-4
TL/H/5583-23

Timing Diagrams

Timing Diagrams (Continued)

Timing Diagrams (Continued)

Connection Diagrams

ADC0832 2-Channel MUX

Dual-In-Line Package (J and N)

COM internally connected to GND.
$\mathrm{V}_{\text {REF }}$ internally connected to V_{CC}.

ADC0831 Single Differential Input

ADC0831 Single Differential Input

Small Outline Package (M)		
	\checkmark	
$\overline{\text { CS }}$ - 1	$1 \quad 14$	$-v_{c c}$
$\mathrm{NC}-2$	$2 \quad 13$	- NC
$\mathrm{V}_{\text {IN }}(+)-3$	$3 \quad 12$	- CLK
NC-4	$4 \quad 11$	- NC
$\mathrm{V}_{\text {IN }}(-)-5$	510	- Do
NC-6	6	- NC
GND-7	7	- $\mathrm{V}_{\mathrm{REF}}$
		TL/H/5583-42
Top View		

ADC0838 8-Channel MUX
Molded Chip Carrier (PCC) Package (V)

TL/H/5583-33

Functional Description

1.0 MULTIPLEXER ADDRESSING

The design of these converters utilizes a sample-data comparator structure which provides for a differential analog input to be converted by a successive approximation routine. The actual voltage converted is always the difference between an assigned "+" input terminal and a "-" input terminal. The polarity of each input terminal of the pair being converted indicates which line the converter expects to be the most positive. If the assigned " + " input is less than the "-" input the converter responds with an all zeros output code.
A unique input multiplexing scheme has been utilized to provide multiple analog channels with software-configurable single-ended, differential, or a new pseudo-differential option which will convert the difference between the voltage at any analog input and a common terminal. The analog signal conditioning required in transducer-based data acquisition systems is significantly simplified with this type of input flexibility. One converter package can now handle ground referenced inputs and true differential inputs as well as signals with some arbitrary reference voltage.
A particular input configuration is assigned during the MUX addressing sequence, prior to the start of a conversion. The MUX address selects which of the analog inputs are to be enabled and whether this input is single-ended or differen-
tial. In the differential case, it also assigns the polarity of the channels. Differential inputs are restricted to adjacent channel pairs. For example channel 0 and channel 1 may be selected as a different pair but channel 0 or 1 cannot act differentially with any other channel. In addition to selecting differential mode the sign may also be selected. Channel 0 may be selected as the positive input and channel 1 as the negative input or vice versa. This programmability is best illustrated by the MUX addressing codes shown in the following tables for the various product options.
The MUX address is shifted into the converter via the DI line. Because the ADC0831 contains only one differential input channel with a fixed polarity assignment, it does not require addressing.
The common input line on the ADC0838 can be used as a pseudo-differential input. In this mode, the voltage on this pin is treated as the "-" input for any of the other input channels. This voltage does not have to be analog ground; it can be any reference potential which is common to all of the inputs. This feature is most useful in single-supply application where the analog circuitry may be biased up to a potential other than ground and the output signals are all referred to this potential.

TABLE I. Multiplexer/Package Options

Part Number	Number of Analog Channels		Number of Package Pins
	Differential		
ADC0831	1	1	8
ADC0832	2	1	8
ADC0834	4	2	14
ADC0838	8	4	20

Functional Description (Continued)
TABLE II. MUX Addressing: ADC0838
Single-Ended MUX Mode

MUX Address					Analog Single-Ended Channel \#							
SGL/ DIF	ODD/ SIGN	$\mathbf{1}$ SELECT		$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1}$	0	0	0	+								COM
1	0	0	1			+						-
1	0	1	0					+				-
1	0	1	1							+		-
1	1	0	0		+							-
1	1	0	1				+					-
1	1	1	0						+			-
1	1	1	1								+	-

Differential MUX Mode

MUX Address				Analog Differential Channel-Pair \#							
$\begin{gathered} \text { SGL/ } \\ \hline \text { DIF } \end{gathered}$	$\begin{aligned} & \hline \text { ODD/ } \\ & \text { SIGN } \end{aligned}$	SELECT		0		1		2		3	
		1	0	0	1	2	3	4	5	6	7
0	0	0	0	+	-						
0	0	0	1			+	-				
0	0	1	0					+	-		
0	0	1	1							+	-
0	1	0	0	-	+						
0	1	0	1			-	+				
0	1	1	0					-	+		
0	1	1	1							-	$+$

TABLE III. MUX Addressing: ADC0834
Single-Ended MUX Mode

MUX Address			Channel \#			
SGL/ DIF	ODD/ SIGN	SELECT	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
	$\mathbf{1}$	0				
1	0	0			+	
1	0	1		+		
1	1	0				+
1	1	1				

COM is internally tied to A GND

Differential MUX Mode

MUX Address			Channel \#			
SGL/ DIF	ODD/ SIGN	SELECT	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
	$\mathbf{1}$	0		-		
0	0	1			+	-
0	0	0	-	+		
0	1	1			-	+
0	1	1				

TABLE IV. MUX Addressing: ADC0832

Single-Ended MUX Mode

MUX Address		Channel \#	
SGL/ $\overline{\text { DIF }}$	ODD/ SIGN	$\mathbf{0}$	$\mathbf{1}$
1	0	+	
1	1		+
COM is internally tied to A GND			

Differential MUX Mode

MUX Address		Channel \#	
SGL/ DIF	ODD/ SIGN	$\mathbf{0}$	$\mathbf{1}$
0	0	+	-
0	1	-	+

Functional Description (Continued)

Since the input configuration is under software control, it can be modified, as required, at each conversion. A channel can be treated as a single-ended, ground referenced input for one conversion; then it can be reconfigured as part of a differential channel for another conversion. Figure 1 illustrates the input flexibility which can be achieved.
The analog input voltages for each channel can range from 50 mV below ground to 50 mV above V_{CC} (typically 5 V) without degrading conversion accuracy.

2.0 THE DIGITAL INTERFACE

A most important characteristic of these converters is their serial data link with the controlling processor. Using a serial communication format offers two very significant system improvements; it allows more function to be included in the converter package with no increase in package size and it can eliminate the transmission of low level analog signals by locating the converter right at the analog sensor; transmitting highly noise immune digital data back to the host processor.

To understand the operation of these converters it is best to refer to the Timing Diagrams and Functional Block Diagram and to follow a complete conversion sequence. For clarity a separate diagram is shown of each device.

1. A conversion is initiated by first pulling the $\overline{\mathrm{CS}}$ (chip select) line low. This line must be held low for the entire conversion. The converter is now waiting for a start bit and its MUX assignment word.
2. A clock is then generated by the processor (if not provided continuously) and output to the A/D clock input.
3. On each rising edge of the clock the status of the data in (DI) line is clocked into the MUX address shift register. The start bit is the first logic " 1 " that appears on this line (all leading zeros are ignored). Following the start bit the converter expects the next 2 to 4 bits to be the MUX assignment word.

TL/H/5583-9

FIGURE 1. Analog Input Multiplexer Options for the ADC0838

Functional Description (Continued)

4. When the start bit has been shifted into the start location of the MUX register, the input channel has been assigned and a conversion is about to begin. An interval of $1 / 2$ clock period (where nothing happens) is automatically inserted to allow the selected MUX channel to settle. The SAR status line goes high at this time to signal that a conversion is now in progress and the DI line is disabled (it no longer accepts data).
5. The data out (DO) line now comes out of TRI-STATE and provides a leading zero for this one clock period of MUX settling time.
6. When the conversion begins, the output of the SAR comparator, which indicates whether the analog input is greater than (high) or less than (low) each successive voltage from the internal resistor ladder, appears at the DO line on each falling edge of the clock. This data is the result of the conversion being shifted out (with the MSB coming first) and can be read by the processor immediately.
7. After 8 clock periods the conversion is completed. The SAR status line returns low to indicate this $1 / 2$ clock cycle later.
8. If the programmer prefers, the data can be provided in an LSB first format [this makes use of the shift enable ($\overline{\mathrm{SE}}$) control line]. All 8 bits of the result are stored in an output shift register. On devices which do not include the SE control line, the data, LSB first, is automatically shifted out the DO line, after the MSB first data stream. The DO line then goes low and stays low until CS is returned high. On the ADC0838 the SE line is brought out and if held high, the value of the LSB remains valid on the DO line. When SE is forced low, the data is then clocked out LSB first. The ADC0831 is an exception in that its data is only output in MSB first format.
9. All internal registers are cleared when the $\overline{\mathrm{CS}}$ line is high. If another conversion is desired, $\overline{\mathrm{CS}}$ must make a high to low transition followed by address information.

a) Ratiometric

The DI and DO lines can be tied together and controlled through a bidirectional processor I/O bit with one wire. This is possible because the DI input is only "looked-at" during the MUX addressing interval while the DO line is still in a high impedance state.

3.0 REFERENCE CONSIDERATIONS

The voltage applied to the reference input to these converters defines the voltage span of the analog input (the difference between $\mathrm{V}_{\text {IN }}(\mathrm{MAX})$ and $\left.\mathrm{V}_{\text {IN(MIN }}\right)$ over which the 256 possible output codes apply. The devices can be used in either ratiometric applications or in systems requiring absolute accuracy. The reference pin must be connected to a voltage source capable of driving the reference input resistance of typically $3.5 \mathrm{k} \Omega$. This pin is the top of a resistor divider string used for the successive approximation conversion.
In a ratiometric system, the analog input voltage is proportional to the voltage used for the A/D reference. This voltage is typically the system power supply, so the $\mathrm{V}_{\text {REF }}$ pin can be tied to V_{CC} (done internally on the ADC0832). This technique relaxes the stability requirements of the system reference as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy, where the analog input varies between very specific voltage limits, the reference pin can be biased with a time and temperature stable voltage source. The LM385 and LM336 reference diodes are good low current devices to use with these converters.
The maximum value of the reference is limited to the $V_{C C}$ supply voltage. The minimum value, however, can be quite small (see Typical Performance Characteristics) to allow direct conversions of transducer outputs providing less than a 5 V output span. Particular care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals $\mathrm{V}_{\text {REF }}$ / 256).

TL/H/5583-10
b) Absolute with a Reduced Span

FIGURE 2. Reference Examples

Functional Description (Continued)

4.0 THE ANALOG INPUTS

The most important feature of these converters is that they can be located right at the analog signal source and through just a few wires can communicate with a controlling processor with a highly noise immune serial bit stream. This in itself greatly minimizes circuitry to maintain analog signal accuracy which otherwise is most susceptible to noise pickup. However, a few words are in order with regard to the analog inputs should the input be noisy to begin with or possibly riding on a large common-mode voltage.
The differential input of these converters actually reduces the effects of common-mode input noise, a signal common to both selected " + " and " - " inputs for a conversion (60 Hz is most typical). The time interval between sampling the " + " input and then the " -" input is $1 / 2$ of a clock period. The change in the common-mode voltage during this short time interval can cause conversion errors. For a sinusoidal common-mode signal this error is:
$\mathrm{V}_{\text {error }}(\max)=\mathrm{V}_{\text {PEAK }}\left(2 \pi \mathrm{f}_{\mathrm{CM}}\right)\left(\frac{0.5}{\mathrm{f}_{\mathrm{CLK}}}\right)$
where f_{CM} is the frequency of the common-mode signal,

$$
V_{\text {PEAK }} \text { is its peak voltage value }
$$

and $\mathrm{f}_{\mathrm{CLK}}$, is the A/D clock frequency.
For a 60 Hz common-mode signal to generate a $1 / 4$ LSB error ($\approx 5 \mathrm{mV}$) with the converter running at 250 kHz , its peak value would have to be 6.63 V which would be larger than allowed as it exceeds the maximum analog input limits.
Due to the sampling nature of the analog inputs short spikes of current enter the " + " input and exit the " - " input at the clock edges during the actual conversion. These currents decay rapidly and do not cause errors as the internal comparator is strobed at the end of a clock period. Bypass capacitors at the inputs will average these currents and cause an effective DC current to flow through the output resistance of the analog signal source. Bypass capacitors should not be used if the source resistance is greater than $1 \mathrm{k} \Omega$.
This source resistance limitation is important with regard to the DC leakage currents of input multiplexer as well. The worst-case leakage current of $\pm 1 \mu \mathrm{~A}$ over temperature will create a 1 mV input error with a $1 \mathrm{k} \Omega$ source resistance. An op amp RC active low pass filter can provide both impedance buffering and noise filtering should a high impedance signal source be required.

5.0 OPTIONAL ADJUSTMENTS

5.1 Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}$, is not ground a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing any $\mathrm{V}_{\mathrm{IN}}(-)$ input at this $\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}$ value. This utilizes the differential mode operation of the A/D.
The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\mathrm{V}_{\mathrm{IN}}(-)$ input and applying a small magnitude positive voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input. Zero error is the difference between the actual DC input voltage which is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal $1 / 2$ LSB value $\left(1 / 2 \mathrm{LSB}=9.8 \mathrm{mV}\right.$ for $\left.\mathrm{V}_{\mathrm{REF}}=5.000 \mathrm{~V}_{\mathrm{DC}}\right)$.

5.2 Full-Scale

The full-scale adjustment can be made by applying a differential input voltage which is $11 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\text {REF }}$ input (or V_{CC} for the ADC0832) for a digital output code which is just changing from 11111110 to 11111111.
5.3 Adjusting for an Arbitrary Analog Input Voltage Range
If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. A $\mathrm{V}_{\mathrm{IN}}(+)$ voltage which equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, using 1 LSB = analog span/256) is applied to selected "+" input and the zero reference voltage at the corresponding "-" input should then be adjusted to just obtain the 00 HEX to 01HEX code transition.
The full-scale adjustment should be made [with the proper $\mathrm{V}_{\mathrm{IN}}(-)$ voltage applied] by forcing a voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input which is given by:

$$
\mathrm{V}_{\mathrm{IN}}(+) \text { fs adj }=\mathrm{V}_{\mathrm{MAX}}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{256}\right]
$$

where:
$\mathrm{V}_{\mathrm{MAX}}=$ the high end of the analog input range and
$\mathrm{V}_{\mathrm{MIN}}=$ the low end (the offset zero) of the analog range.
(Both are ground referenced.)
The $\mathrm{V}_{\text {REF }}$ (or V_{CC}) voltage is then adjusted to provide a code change from FE HEX 2 to $\mathrm{FF}_{\text {HEX }}$. This completes the adjustment procedure.

6.0 POWER SUPPLY

A unique feature of the ADC0838 and ADC0834 is the inclusion of a zener diode connected from the V^{+}terminal to ground which also connects to the V_{CC} terminal (which is the actual converter supply) through a silicon diode, as shown in Figure 3. (See Note 3)

FIGURE 3. An On-Chip Shunt Regulator Diode

Functional Description (Continued)

This zener is intended for use as a shunt voltage regulator to eliminate the need for any additional regulating components. This is most desirable if the converter is to be remotely located from the system power source. Figures 4 and 5 illustrate two useful applications of this on-board zener when an external transistor can be afforded.
An important use of the interconnecting diode between V^{+} and $V_{C C}$ is shown in Figures 6 and 7. Here, this diode is used as a rectifier to allow the V_{CC} supply for the converter
to be derived from the clock. The low current requirements of the A/D and the relatively high clock frequencies used (typically in the range of $10 \mathrm{k}-400 \mathrm{kHz}$) allows using the small value filter capacitor shown to keep the ripple on the V_{CC} line to well under $1 / 4$ of an LSB. The shunt zener regulator can also be used in this mode. This requires a clock voltage swing which is in excess of V_{z}. A current limit for the zener is needed, either built into the clock generator or a resistor can be used from the CLK pin to the V^{+}pin.

Applications

FIGURE 4. Operating with a Temperature Compensated Reference

TL/H/5583-12

Applications (Continued)

Digital Link and Sample Controlling Software for the Serially Oriented COP420 and the Bit Programmable I/O INS8048

COP CODING EXAMPLE

Mnemonic	Instruction
LEI	ENABLES SIO's INPUT AND OUTPUT
SC	$C=1$
OGI	$\mathrm{G} 0=0$ ($\overline{\mathrm{CS}}=0$)
CLR A	CLEARS ACCUMULATOR
AISC 1	LOADS ACCUMULATOR WITH 1
XAS	EXCHANGES SIO WITH ACCUMULATOR AND STARTS SK CLOCK
LDD	LOADS MUX ADDRESS FROM RAM INTO ACCUMULATOR
NOP	-
XAS	LOADS MUX ADDRESS FROM
	ACCUMULATOR TO SIO REGISTER
\uparrow 8 INSTRUCTIONS \downarrow	
XAS	READS HIGH ORDER NIBBLE (4 BITS)
	INTO ACCUMULATOR
XIS	PUTS HIGH ORDER NIBBLE INTO RAM
CLR A	CLEARS ACCUMULATOR
RC	$\mathrm{C}=0$
XAS	READS LOW ORDER NIBBLE INTO
	ACCUMULATOR AND STOPS SK
XIS	PUTS LOW ORDER NIBBLE INTO RAM
OGI	$\mathrm{G} 0=1(\overline{\mathrm{CS}}=1)$
LEI	DISABLES SIO's INPUT AND OUTPUT

TL/H/5583-13
8048 CODING EXAMPLE
Mnemonic Instruction

	MOV	B, \#5
MOV	A, \#ADDR	$;$ A \leftarrow MUX COUNTER $\leftarrow 5$
LOOP 1:	RRC	A

JC ONE ;TEST BIT
;BIT = 0
ZERO: ANL P1,\#OFEH ;DI $\leftarrow 0$
JMP CONT ;CONTINUE
;BIT=1
ONE: ORL P1,\#1 ;DI $\leftarrow 1$
CONT: CALL PULSE \quad PUULSE SK $0 \rightarrow 1 \rightarrow 0$ DJNZ B, LOOP 1 ;CONTINUE UNTIL DONE CALL PULSE ;EXTRA CLOCK FOR SYNC MOV B, \#8 ;BIT COUNTER $\leftarrow 8$
LOOP 2: CALL PULSE \quad;PULSE SK $0 \rightarrow 1 \rightarrow 0$ IN A, P1 ;CY \leftarrow DO RRC A RRC A MOV A, C \quad A \leftarrow RESULT RLC A \quad A $(0) \leftarrow$ BIT AND SHIFT MOV C, A ;C \leftarrow RESULT DJNZ B, LOOP 2 ;CONTINUE UNTIL DONE
RETR
PULSE:
;PULSE SUBROUTINE

ORL	P1, \#04	;SK $\leftarrow 1$
NOP		;DELAY
ANL	P1, \#0FBH	$;$ SK $\leftarrow 0$

RET

Applications (Continued)

Applications (Continued)

Applications (Continued)

> - Simpler version of 8 -channel
> - $\overline{\text { CS }}$ derived from long CLK pulse ${ }^{40 \mathrm{kHz}} \mathrm{\square}$

Ordering Information

Part Number	Analog Input Channels	Total Unadjusted Error	Package	Temperature Range
$\begin{aligned} & \text { ADC0831BCJ } \\ & \text { ADC0831BCN } \end{aligned}$		$\pm 1 / 2$	Hermetic (J) Molded (N)	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$
ADC0831CCJ ADC0831CCN ADC0831CIWM ADC0831CCWM	1	± 1	Hermetic (J) Molded (N) SO(M) SO(M)	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$
ADC0832BIWM ADC0832BCN		$\pm 1 / 2$	SO(M) Molded (N)	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$
ADC0832CIWM ADC0832CCN ADC0832CCWM	2	± 1	$\begin{gathered} \mathrm{SO}(\mathrm{M}) \\ \text { Molded (N) } \\ \mathrm{SO}(\mathrm{M}) \\ \hline \end{gathered}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$

Ordering Information (Continued)				
Part Number	Analog Input Channels	Total Unadjusted Error	Package	Temperature Range
ADC0834BCN		$\pm 1 / 2$	Molded (N)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ADC0834CCJ ADC0834CCN ADC0834CCWM ADC0834CIWM	4	± 1	Hermetic (J) Molded (N) SO(M) SO(M)	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$
ADC0838BCJ ADC0838BCV ADC0838BCN		$\pm 1 / 2$	Hermetic (J) PCC (V) Molded (N)	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$
ADC0838CCJ ADC0838CCV ADC0838CCN ADC0838CIWM ADC0838CCWM	8	± 1	Hermetic (J) PCC (V) Molded (N) SO(M) SO(M)	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

